

Delta Independent Science Board

Delta Reform Act:

The Delta Independent Science Board shall provide oversight of the scientific research, monitoring, and assessment programs that support adaptive management of the Delta through periodic reviews

Habitat Restoration in the Delta

- What is being done and planned?
- How is science being used?
- How are the potential effects of climate change being considered?

BDCP Habitat Restoration

- 65,000 acres tidal wetlands
- 10,000 acres seasonally inundated floodplain
- 20 miles channel margin
- 5,000 acres riparian habitat
- + additional restoration for terrestrial species and communities

Source: Bay Delta Conservation Plan, March 2013

The Review Process

- presentations and discussions with representatives of 25 agencies, water districts, consultants, NGOs, universities
- attended presentations at Bay-Delta Science Conference
- reviewed background and planning documents

• drew on our own expertise and experiences

Our Overall Impressions

- there is a high level of skill and enthusiasm among those most directly involved in restoration
- there is lots of good restoration being done

The Ideal: Goals are clear

The findings:

- most projects have well-defined goals and targets
- not clear how diverse project goals will contribute to restoring the Delta as a whole
- targets not always ecologically appropriate
- few indications of rigorous, operational performance measures

The Ideal: *Spatial context is part of design*The findings:

- projects are constrained by site availability, permitting, and funding
- even when carefully planned, projects are often implemented independently, without considering the surrounding landscape
- projects might be linked in networks based on shared goals, targets, landscape setting, etc.

The Ideal: *Temporal context is part of design*The findings:

- when climate change is considered, it is usually in the context of sea-level rise
- few specific actions and little attention to long-term risks
- threshold changes rarely considered
- uncertainty will require flexibility

The Ideal: Adaptive management is part of design The findings:

- mandated by Delta Reform Act, and everyone talked about it
- few specifics provided
- no agreement about how adaptive management should be done, who should do it, or who should provide the long-term funding

The Ideal: *Monitoring is part of design*The findings:

- importance is widely recognized
- insufficient attention to what, when, how often, and how long to monitor
- methods and data management are not standardized
- long-term commitment and funding are lacking

The Ideal: *Modeling is used effectively*The findings:

- models can provide insights into broad-scale processes and scenarios of future changes
- use of models is currently inconsistent and decentralized
- sophisticated modeling is expensive and demands specialized expertise
- a modeling consortium could facilitate sharing of expertise

The Ideal: *Planning and implementation are coordinated*The findings:

- all parties recognize the need for coordinated efforts
- activities at all levels and scales must be coordinated
- restoration should be coordinated with other management decisions
- coordination requires communication and sharing of data and findings

The Ideal: *Scientific expertise is sufficient*The findings:

- scientific needs should be identified during planning
- scientists involved in planning and implementation are spread thin; science staffing in agencies should be strengthened
- consultants and NGOs bring important scientific expertise
- greater use can be made of expertise in universities

The Ideal: *Stakeholders are involved*The findings:

- communication with key stakeholders is generally good
- outreach to those affected should occur throughout planning and implementation
- communication with stakeholders is not science, but it is essential to conducting science-based restoration

Our Recommendations

The Recommendations

1. Establish a mechanism to coordinate planning and implementation of habitat restoration projects to capitalize on potential synergies and complementarities

The Recommendations

2. Incorporate uncertainty and potential climate-change effects in the design and implementation of habitat restoration projects, using modeling where appropriate

The Recommendations

3. Prioritize restoration projects in strategically designed networks to make the best use of limited funds

The Recommendations

4. Strengthen and integrate scientific information and expertise to support monitoring and adaptive management

